Square-tiled surfaces and rigid curves on moduli spaces

  • Chen D
  • 5

    Readers

    Mendeley users who have this article in their library.
  • 11

    Citations

    Citations of this article.

Abstract

We study the algebro-geometric aspects of Teichmüller curves parameterizing square-tiled surfaces with two applications.(a) There exist infinitely many rigid curves on the moduli space of hyperelliptic curves. They span the same extremal ray of the cone of moving curves. Their union is a Zariski dense subset. Hence they yield infinitely many rigid curves with the same properties on the moduli space of stable n-pointed rational curves for even n.(b) The limit of slopes of Teichmüller curves and the sum of Lyapunov exponents for the Teichmüller geodesic flow determine each other, which yields information about the cone of effective divisors on the moduli space of curves. © 2011 Elsevier Inc.

Author-supplied keywords

  • Branched covers
  • Moduli space of curves
  • Teichmüller curves

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Dawei Chen

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free