Statistical recursive filtering for offset nonuniformity estimation in infrared focal-plane-array sensors

  • Martin C
  • Torres S
  • Pezoa J
  • 4


    Mendeley users who have this article in their library.
  • 19


    Citations of this article.


We have developed a recursive estimator for the offset nonuniformity (NU) present in infrared (IR) focal-plane-array (FPA) imaging systems. The estimator is optimal in the least-square error sense and estimates the offset NU using only the collected scene data. Our scene-based nonuniformity correction (NUC) method exploits Kalman's theory in order to estimate a constant in noise. The method is based upon two key assumptions: (i) the input irradiance at each detector is assumed to be a random variable uniformly distributed in a range that is common to all detectors in the IR-FPA; and (ii) the IR data sequences considered are temporally short enough such that the offset NU at each pixel of the array remains constant within the sequence. The proposed algorithm iterates over the frames in a pixel-by-pixel basis and updates two filter parameters for each pixel over the IR-FPA. Additionally, an on-line technique for ghosting artifacts cancellation is introduced to the NUC filter and an index to assess the artifact reduction is developed. The ability of the method to compensate for the offset NU is demonstrated by filtering video sequences from mid- and long-wave IR cameras. © 2008 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Image sequence processing
  • Infrared focal plane arrays
  • Recursive filtering

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free