Structural analysis of a cryogen-free refrigerator for space

  • Emes M
  • Hepburn I
  • Ray R
 et al. 
  • 6

    Readers

    Mendeley users who have this article in their library.
  • 3

    Citations

    Citations of this article.

Abstract

Future X-ray observatories in space, such as European Space Agency's (ESA) X-ray evolving universe spectroscopy (XEUS) mission, will require cooling to the region 10-100 mK to enable the utilisation of advanced cryogenic photon detectors in cryogenic spectrometer instruments. Such missions are envisaged to be completely cryogen-free, replacing the traditional superfluid liquid helium cryostat with a space worthy mechanically cooled system. As part of the Mullard Space Science Laboratory's (MSSL) adiabatic demagnetisation refrigerator (ADR) development programme, we have investigated the construction of a flight cryostat containing a 10 mK ADR (the MSSL double ADR (dADR)) that can be cooled by a single Astrium (formally Matra Marconi Space (MMS)) 4 K mechanical cooler. A proto-type dADR has been constructed and will be flight proven as part of a sounding rocket payload, where the dADR system will be used to cool an array of superconducting tunnel junction (STJ) detectors at the focus of an X-ray telescope. © 2002 Elsevier Science Ltd. All rights reserved.

Author-supplied keywords

  • 10 mK refrigeration
  • Adiabatic demagnetisation refrigerator
  • Refrigeration in space

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free