The three-dimensional structure of human aurora-C kinase predicted by homology modeling

  • Han W
  • Zhou Y
  • Yao Y
 et al. 
  • 5

    Readers

    Mendeley users who have this article in their library.
  • 5

    Citations

    Citations of this article.

Abstract

Aurora-C is a key member of a closely related subgroup of serine/threonine kinase that plays an important role in the completion of essential mitotic events. By means of the homology modeling and the known structure of aurora-B, the 3D structure of aurora-C sourced human sapiens is modeled and then refined by using molecular mechanics (MM) optimization and molecular dynamics (MD) simulation. The final refined model is further assessed by Profile-3D and PROCHECK, which shows that this model is reliable. And then, the inhibitors H-89 and H-8 are docked to aurora-C. The docking study shows that Ala149 and Lys134 are important in inhibition as they form hydrogen bonds and have strong nonbonding interaction with H-89. We also suggest that Ile133, His130, and Ile148 are three important residues in binding as they have strong nonbonding interaction with H-89. The high affinity of H-89 compared with H-8 is explained by the much larger value of van der Waals energy with the enzyme. Our results will be helpful for further experimental investigations. © 2007 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Aurora-C
  • Docking
  • H-8
  • H-89
  • Homology modeling

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free