On the threshold dividend strategy for a generalized jump-diffusion risk model

14Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we generalize the Cramér-Lundberg risk model perturbed by diffusion to incorporate jumps due to surplus fluctuation and to relax the positive loading condition. Assuming that the surplus process has exponential upward and arbitrary downward jumps, we analyze the expected discounted penalty (EDP) function of Gerber and Shiu (1998) under the threshold dividend strategy. An integral equation for the EDP function is derived using the Wiener-Hopf factorization. As a result, an explicit analytical expression is obtained for the EDP function by solving the integral equation. Finally, phase-type downward jumps are considered and a matrix representation of the EDP function is presented. © 2010 Elsevier B.V.

Cite

CITATION STYLE

APA

Chi, Y., & Lin, X. S. (2011). On the threshold dividend strategy for a generalized jump-diffusion risk model. Insurance: Mathematics and Economics, 48(3), 326–337. https://doi.org/10.1016/j.insmatheco.2010.11.006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free