Time-dependent magnetotransport in semiconductor nanostructures via the generalized master equation

  • Gudmundsson V
  • Tang C
  • Gainar C
 et al. 
  • 5


    Mendeley users who have this article in their library.
  • 0


    Citations of this article.


Transport of electrons through two-dimensional semiconductor structures on the nanoscale in the presence of perpendicular magnetic field depends on the interplay of geometry of the system, the leads, and the magnetic length. We use a generalized master equation (GME) formalism to describe the transport through the system without resorting to the Markov approximation. Coupling to the leads results in elastic and inelastic processes in the system that are described to a high order by the integro-differential equation of the GME formalism. Geometrical details of systems and leads leave their fingerprints on the transport of electrons through them. The GME formalism can be used to describe both the initial transient regime immediately after the coupling of the leads to the system and the steady state achieved after a longer time. © 2010 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Generalized master equation
  • Geometry
  • Leads
  • Magneto transport
  • Nanostructures

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free