Transforming spanning trees: A lower bound

Citations of this article
Mendeley users who have this article in their library.
Get full text


For a planar point set we consider the graph whose vertices are the crossing-free straight-line spanning trees of the point set, and two such spanning trees are adjacent if their union is crossing-free. An upper bound on the diameter of this graph implies an upper bound on the diameter of the flip graph of pseudo-triangulations of the underlying point set. We prove a lower bound of Ω(logn/loglogn) for the diameter of the transformation graph of spanning trees on a set of n points in the plane. This nearly matches the known upper bound of O(logn). If we measure the diameter in terms of the number of convex layers k of the point set, our lower bound construction is tight, i.e., the diameter is in Ω(logk) which matches the known upper bound of O(logk). So far only constant lower bounds were known. © 2009 Elsevier B.V. All rights reserved.




Buchin, K., Razen, A., Uno, T., & Wagner, U. (2009). Transforming spanning trees: A lower bound. In Computational Geometry: Theory and Applications (Vol. 42, pp. 724–730).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free