W1, N versus C1 local minimizers for elliptic functionals with critical growth in RN

  • Giacomoni J
  • Prashanth S
  • Sreenadh K
  • 5


    Mendeley users who have this article in their library.
  • 8


    Citations of this article.


Let Ω ⊂ RNbe a bounded smooth domain, f : Ω × R → R be a Caratheodory function with s f (x, s) ≥ 0 ∀ (x, s) ∈ Ω × R and supx ∈ Ω| f (x, s) | ≤ C (1 + | s |)pe| s |frac(N, (N - 1)), ∀ s ∈ R, for some C > 0. Consider the functional J : W1, N(Ω) → R, Ω defined asJ (u) over(=, def) frac(1, N) {norm of matrix} u {norm of matrix}W1, N (Ω)N- under(∫, Ω) F (x, u) - frac(1, q + 1) {norm of matrix} u {norm of matrix}Lq + 1 (∂ Ω)q + 1, where F (x, u) = ∫0uf (x, s) d s and q > 0. We show that if u0∈ C1(over(Ω, -)) is a local minimum of J in the C1(over(Ω, -)) topology, then it is also a local minimum of J in W1, N(Ω) topology. To cite this article: J. Giacomoni et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free