- Giacomoni J
- Prashanth S
- Sreenadh K

Comptes Rendus Mathematique (2009) 347(5-6) 255-260

- 5Mendeley users who have this article in their library.
- 8Citations of this article.

Let Ω ⊂ RNbe a bounded smooth domain, f : Ω × R → R be a Caratheodory function with s f (x, s) ≥ 0 ∀ (x, s) ∈ Ω × R and supx ∈ Ω| f (x, s) | ≤ C (1 + | s |)pe| s |frac(N, (N - 1)), ∀ s ∈ R, for some C > 0. Consider the functional J : W1, N(Ω) → R, Ω defined asJ (u) over(=, def) frac(1, N) {norm of matrix} u {norm of matrix}W1, N (Ω)N- under(∫, Ω) F (x, u) - frac(1, q + 1) {norm of matrix} u {norm of matrix}Lq + 1 (∂ Ω)q + 1, where F (x, u) = ∫0uf (x, s) d s and q > 0. We show that if u0∈ C1(over(Ω, -)) is a local minimum of J in the C1(over(Ω, -)) topology, then it is also a local minimum of J in W1, N(Ω) topology. To cite this article: J. Giacomoni et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.

Mendeley saves you time finding and organizing research

Sign up here

Already have an account ?Sign in

Choose a citation style from the tabs below