Skip to content
Journal article

A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

Petrenko V, Martinerie P, Novelli P, Etheridge D, Levin I, Wang Z, Blunier T, Chappellaz J, Kaiser J, Lang P, Steele L, Hammer S, Mak J, Langenfelds R, Schwander J, Severinghaus J, Witrant E, Petron G, Battle M, Forster G, Sturges W, Lamarque J, Steffen K, White J ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 15 (2013) pp. 7567-7585

  • 28

    Readers

    Mendeley users who have this article in their library.
  • 9

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monox- ide (CO) mole fraction from Greenland firn air. Firn air sam- ples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO at- mospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150nmol mol−1, which is higher than today’s values. Ocean Science CO mole fractions rose by 10–15 nmol mol−1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed Open Access by a ≈30 nmol mol−1 decline to today’s levels.We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO Solid Earth emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

Find this document

Get full text

Authors

  • V. V. Petrenko

  • P. Martinerie

  • P. Novelli

  • D. M. Etheridge

  • I. Levin

  • Z. Wang

Cite this document

Choose a citation style from the tabs below