Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors

  • Calabresi P
  • Saiardi A
  • Pisani A
 et al. 
  • 117

    Readers

    Mendeley users who have this article in their library.
  • 209

    Citations

    Citations of this article.

Abstract

Dopamine D2 receptors (D2Rs) are of crucial importance in the striatal processing of motor information received from the cortex. Disruption of the D2R gene function in mice results in a severe locomotor impairment. This phenotype has analogies with Parkinson's disease symptoms. D2R-null mice were used to investigate the role of this receptor in the generation of striatal synaptic plasticity. Tetanic stimulation of corticostriatal fibers produced long-term depression (LTD) of EPSPs in slices from wild-type (WT) mice. Strikingly, recordings from D2R-null mice showed the converse: long-term potentiation (LTP). This LTP, unlike LTD, was blocked by an NMDA receptor antagonist. In magnesium-free medium, LTP was also revealed in WT mice and found to be enhanced by L-sulpiride, a D2R antagonist, whereas it was reversed into LTD by LY 17555, a D2R agonist. In D2R-null mice this modulation was lost. Thus, our study indicates that D2Rs play a key role in mechanisms underlying the direction of long-term changes in synaptic efficacy in the striatum. It also shows that an imbalance between D2R and NMDA receptor activity induces altered synaptic plasticity at corticostriatal synapses. This abnormal synaptic plasticity might cause the movement disorders observed in Parkinson's disease.

Author-supplied keywords

  • albin et
  • and treatment of parkinson
  • d2 receptor knock-out mice
  • dopamine
  • dopamine d2 receptor
  • dopamine receptors play a
  • ltd
  • ltp
  • nmda
  • pathophysiology
  • pivotal role in the
  • s disease and schizophrenia
  • striatum
  • synaptic plasticity

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Paolo Calabresi

  • Adolfo Saiardi

  • Antonio Pisani

  • Ja-hyun H Baik

  • Diego Centonze

  • Nicola B Mercuri

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free