Absorption and scattering microscopy of single metal nanoparticles

  • Dijk M
  • Tchebotareva A
  • Orrit M
 et al. 
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Several recently developed detection techniques opened studies of individual metal nanoparticles (1–100 nm in diameter) in the optical far field. Eliminating averaging over the broad size and shape distributions produced by even the best of current synthesis methods, these studies hold great promise for gaining a deeper insight into many of the properties of metal nanoparticles, notably electronic and vibrational relaxation. All methods are based on detection of a scattered wave emitted either by the particle itself, or by its close environment. Direct absorption and interference techniques rely on the particle’s scattering and have similar limits in signal-to-noise ratio. The photothermal method uses a photo-induced change in the refractive index of the environment as an additional step to scatter a wave with a different wavelength. This leads to a considerable improvement in signal-to-background ratio, and thus to a much higher sensitivity. We briefly discuss and compare these various techniques, review the new results they generated so far, and conclude on their great potential for nanoscience and for single-molecule labelling in biological assays and live cells.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • M. A. van Dijk

  • A. L. Tchebotareva

  • Michel Orrit

  • M. Lippitz

  • S. Berciaud

  • D. Lasne

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free