Accelerating development of metal organic framework membranes using atomically detailed simulations

  • Keskin S
  • Sholl D
  • 5


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


A new group of nanoporous materials, metal organic frameworks (MOFs), have emerged as a fascinating alternative to more traditional nanoporous materials for membrane based gas separations. Although hundreds of different MOF structures have been synthesized in powder forms, very little is currently known about the potential performance of MOFs as membranes since fabrication and testing of membranes from new materials require a large amount of time and resources. The purpose of this thesis is to predict the macroscopic flux of multi-component gas mixtures through MOF-based membranes with information obtained from detailed atomistic simulations. First, atomically detailed simulations of gas adsorption and diffusion in MOFs combined with a continuum description of a membrane are introduced to predict the performance of MOF membranes. These results are compared with the only available experimental data for a MOF membrane. An efficient approximate method based on limited information from molecular simulations to accelerate the modeling of MOF membranes is then introduced. The accuracy and computational efficiency of different modeling approaches are discussed. A robust screening strategy is proposed to screen numerous MOF materials to identify the ones with the high membrane selectivity and to direct experimental efforts to the most promising of many possible MOF materials. This study provides the first predictions of any kind about the potential of MOFs as membranes and demonstrates that using molecular modeling for this purpose can be a useful means of identifying the phenomena that control the performance of MOFs as membranes.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • Seda Keskin

  • David Sholl

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free