Accuracy of circular polarization as a measure of spin polarization in quantum dot qubits

  • Pryor C
  • Flatté M
  • 28


    Mendeley users who have this article in their library.
  • 48


    Citations of this article.


Accuracy of Circular Polarization as a Measure of Spin Polarization in Quantum Dot Qubits C. E. Pryor and M. E. Flatté Optical Science and Technology Center and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA (Received 13 May 2003; published 15 December 2003) A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry. ©2003 The American Physical Society URL: doi:10.1103/PhysRevLett.91.257901 PACS: 03.67.Lx, 73.63.Kv Additional Information Full Text: [ PDF (618 kB) GZipped PS Order Document ] References Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window. D. Loss and D. P. DiVincenzo, Phys. Rev. B 57, 120 (1998). [ISI] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999). [ISI] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999). [ISI] J. Levy, Phys. Rev. Lett. 89, 147902 (2002). Y. Chye, M. E. White, E. Johnston-Halperin, B. D. Gerardot, D. D. Awschalom, and P. M. Petroff, Phys. Rev. B 66, 201301(R) (2002). G. A. Prinz, Phys. Today 48, No. 4, 58 (1995). [SPIN] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, and M. L. Roukes, Science 294, 1488 (2001). Y. Ohno, D. K. Young, B. Beschoten, F. M. H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999). [INSPEC] [ISI] D. K. Young, E. Johnston-Halperin, and D. D. Awschalom, Appl. Phys. Lett. 80, 1598 (2002). E. Johnston-Halperin, D. Lofgreen, R. K. Kawakami, D. K. Young, L. Coldren, A. C. Gossard, and D. D. Awschalom, Phys. Rev. B 65, 041306(R) (2002). M. Kohda, Y. Ohno, K. Takamura, F. Matsukura, and H. Ohno, Jpn. J. Appl. Phys. 40, Pt. 2, L1274 (2001). [ISI] I. Kegel, T. H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J. M. García, and P. M. Petroff, Phys. Rev. Lett. 85, 1694 (2000). [ISI] C. Pryor, M.-E. Pistol, and L. Samuelson, Phys. Rev. B 56, 10 404 (1997). [ISI] C. Pryor, Phys. Rev. B 57, 7190 (1998). [ISI] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). [ISI]

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • C. E. Pryor

  • M. E. Flatté

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free