Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: A kidney study

95Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Acoustic droplet vaporization (ADV) has been introduced with the potential application of tumor treatment via occlusion and subsequent necrosis. New Zealand White rabbits were anesthetized, and their left kidney was externalized. An imaging array and single-element transducer were positioned in a tank with direct access to the kidney's vasculature and renal artery. Filtered droplet emulsions (diameter <6 μm) were injected intra-arterially (IA) into the left heart during insonification of the renal artery, and the extent of blood flow reduction by ADV was compared to the untreated right kidney. Flow cytometry (using colored microspheres) of kidney tissue samples and reference blood from the femoral artery allowed the quantitative estimation of regional blood flow. A maximum regional blood flow reduction in the treated region of >90% and an average organ perfusion reduction of >70% was achieved using ADV. After treatment of the left kidney, the control kidney on the contralateral side showed a maximum decrease in regional blood flow of 18% relative to the preADV baseline. Image-based hyper-echogenicity from ADV of IA injections was monitored for approximately 90 minutes, and cortex perfusion was reduced by >60% of its original value for more than 1 hour. This could be enough time for the onset of cell death and possible tumor treatment via ischemic necrosis. Moreover, currently used radiofrequency tissue ablation-based tumor treatment could benefit from ADV due to the decreased heat loss via vascular cooling. © 2005 IEEE.

Cite

CITATION STYLE

APA

Kripfgans, O. D., Orifici, C. M., Carson, P. L., Ives, K. A., Eldevik, O. P., & Fowlkes, J. B. (2005). Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: A kidney study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(7), 1101–1108. https://doi.org/10.1109/TUFFC.2005.1503996

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free