Adaptive projection operators in multiresolution scientific visualization

  • Ohlberger M
  • Rumpf M
  • 10


    Mendeley users who have this article in their library.
  • 14


    Citations of this article.


Recently multiresolution visualization methods have become an indispensable ingredient of real-time interactive postprocessing. The enormous databases typically coming along with some hierarchical structure are locally resolved on different levels of detail to achieve a significant savings of CPU and rendering time. Here the method of adaptive projection and the corresponding operators on data functions respectively are introduced. They are defined and discussed as mathematically rigorous foundations for multiresolution data analysis. Keeping in mind data from efficient numerical multigrid methods this approach applies to hierarchical nested grids consisting of elements which are any tensor product of simplices generated recursively by an arbitrary finite set of refinement rules from some coarse grid. The corresponding visualization algorithms e.g. color shading on slices or isosurface rendering are confined to an appropriate depth-first traversal of the grid hierarchy. A continuous projection of the data onto an adaptive extracted subgrid is thereby calculated recursively. The presented concept covers different methods of local error measurement time-dependent data which have to be interpolated from a sequence of key frames and a tool for local data focusing. Furthermore it allows for a continuous level of detail. ©1998 IEEE.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Mario OhlbergerWestphalian Wilhelm University Munster Institute of Numerical and Applied Mathematics

  • Martin Rumpf

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free