Adaptive projection operators in multiresolution scientific visualization

15Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recently, multiresolution visualization methods have become an indispensable ingredient of real-time interactive postprocessing. The enormous databases, typically coming along with some hierarchical structure, are locally resolved on different levels of detail to achieve a significant savings of CPU and rendering time. Here, the method of adaptive projection and the corresponding operators on data functions, respectively, are introduced. They are defined and discussed as mathematically rigorous foundations for multiresolution data analysis. Keeping in mind data from efficient numerical multigrid methods, this approach applies to hierarchical nested grids consisting of elements which are any tensor product of simplices, generated recursively by an arbitrary, finite set of refinement rules from some coarse grid. The corresponding visualization algorithms, e.g., color shading on slices or isosurface rendering, are confined to an appropriate depth-first traversal of the grid hierarchy. A continuous projection of the data onto an adaptive, extracted subgrid is thereby calculated recursively. The presented concept covers different methods of local error measurement, time-dependent data which to be interpolated from a sequence of key frames, and a tool for local data focusing. Furthermore, it allows for a continuous level of detail.

Cite

CITATION STYLE

APA

Ohlberger, M., & Rumpf, M. (1999). Adaptive projection operators in multiresolution scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5(1), 74–94. https://doi.org/10.1109/2945.764874

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free