Journal article

Aerosol and precipitation chemistry in the southwestern United States: Spatiotemporal trends and interrelationships

Sorooshian A, Shingler T, Harpold A, Feagles C, Meixner T, Brooks P ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 15 (2013) pp. 7361-7379

  • 25


    Mendeley users who have this article in their library.
  • 21


    Citations of this article.
Sign in to save reference


This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February) and during the monsoon season (July–September). Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg 2+, K+ , Na+) exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO2−4 , NO−3, and Cl −, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO2−4 show a statistically significant correlation with rain SO2−4 unlike snow SO2−4, which may be related to some combination of the vertical distribution of SO2−4 (and precursors) and the varying degree to which SO2−4 -enriched particles act as cloud con15 densation nuclei versus ice nuclei in the region. The coarse:fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO−3:SO2−4 ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM2.5; (ii) they exhibit the opposite annual cycle compared to particulate NO−3 :SO2−4 20 ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO −3:SO2 −4 ratio in rain decreased at the majority of sites due mostly to air pollution regulations of SO2 −4 precursors.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free