Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size

  • Nie S
  • Bailey R
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Alloyed semiconductor quantum dots (cadmium selenium telluride) with both homogeneous and gradient internal structures have been prepared to achieve continuous tuning of the optical properties without changing the particle size. Our results demonstrate that composition and internal structure are two important parameters that can be used to tune the optical and electronic properties of multicomponent, alloyed quantum dots. A surprising finding is a nonlinear relationship between the composition and the absorption/emission energies, leading to new properties not obtainable from the parent binary systems. With red-shifted light emission up to 850 nm and quantum yields up to 60%, this new class of alloyed quantum dots opens new possibilities in band gap engineering and in developing near-infrared fluorescent probes for in vivo molecular imaging and biomarker detection.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • SM Nie

  • RE Bailey

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free