Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature

  • Lü R
  • Zhou W
  • Shi K
 et al. 
  • 24

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Alumina (Al2O3) decorated anatase TiO2 nanotubes with ordered mesoporous pore walls (Al2O3/meso-TiO2 nanotubes) are successfully synthesized through vacuum pressure induction technology, and then combined with the thermal decomposition of a mesoporous TiO2 sol precursor, inside the cylindrical nanochannels of an anodic aluminium oxide (AAO) template. The decorated Al2O3 was formed by in situ deposition via direct reaction of the strong acid sol precursor and the nanochannel wall of the AAO template. The resultant Al2O3/meso-TiO2 nanotubes are characterized in detail by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and N2 adsorption-desorption. The experimental results reveal that the Al2O3/meso-TiO2 nanotubes have a tubular structure with an average diameter of ∼200 nm and highly ordered mesopores in the tubular walls. The Al2O3 is distributed evenly on the anatase TiO2 nanotubes. Moreover, the Al2O3/meso-TiO2 nanotubes possess a large specific surface area (136 m(2) g(-1)) and narrow mesopore size distribution (∼10 nm). By using NO(x) as a probe molecule, the Al2O3/meso-TiO2 nanotube films exhibit better sensing performance than that of mesoporous TiO2 nanotubes, in terms of their high sensitivity, fast response-recovery time, and good stability in air at room temperature. The outstanding performance in the gas sensing ability of Al2O3/meso-TiO2 nanotubes is a result of their one-dimensional tubular and mesoporous nanostructures, advantageous for the adsorption and diffusion of NO(x) gas. In addition, the sensing response is greatly improved by virtue of the decorated Al2O3 on the surfaces of the TiO2 nanotubes, which acts as an energy barrier to suppress charge recombination. The structural properties of the Al2O3/meso-TiO2 nanotubes makes them a viable novel gas sensor material at room temperature.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Renjiang Lü

  • Wei Zhou

  • Keying Shi

  • Ying Yang

  • Lei Wang

  • Kai Pan

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free