Amyloid-β disrupts ongoing spontaneous activity in sensory cortex

  • Beker S
  • Goldin M
  • Menkes-Caspi N
 et al. 
  • 18

    Readers

    Mendeley users who have this article in their library.
  • 1

    Citations

    Citations of this article.

Abstract

The effect of Alzheimer{\textquoteright}s disease pathology on activity of individual neocortical neurons in the intact neural network remains obscure. Ongoing spontaneous activity, which constitutes most of neocortical activity, is the background template on which further evoked-activity is superimposed. We compared in vivo intracellular recordings and local field potentials (LFP) of ongoing activity in the barrel cortex of APP/PS1 transgenic mice and age-matched littermate Controls, following significant amyloid-β (Aβ) accumulation and aggregation. We found that membrane potential dynamics of neurons in Aβ-burdened cortex significantly differed from those of nontransgenic Controls: durations of the depolarized state were considerably shorter, and transitions to that state frequently failed. The spiking properties of APP/PS1 neurons showed alterations from those of Controls: both firing patterns and spike shape were changed in the APP/PS1 group. At the population level, LFP recordings indicated reduced coherence within neuronal assemblies of APP/PS1 mice. In addition to the physiological effects, we show that morphology of neurites within the barrel cortex of the APP/PS1 model is altered compared to Controls. These results are consistent with a process where the effect of Aβ on spontaneous activity of individual neurons amplifies into a network effect, reducing network integrity and leading to a wide cortical dysfunction.

Author-supplied keywords

  • Alzheimer’s disease
  • Firing patterns
  • LFP
  • Membrane potential
  • Plaques
  • Synaptic summation

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free