Analytical process damping stability prediction

  • Tyler C
  • Schmitz T
  • 42


    Mendeley users who have this article in their library.
  • 25


    Citations of this article.


This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds. © 2012 The Society of Manufacturing Engineers.

Author-supplied keywords

  • Dynamics
  • Machining
  • Modeling
  • Process damping
  • Tool wear

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free