Anomalous energy pathway of vacancy migration and self-diffusion in hcp Ti

  • Shang S
  • Hector L
  • Wang Y
 et al. 
  • 37

    Readers

    Mendeley users who have this article in their library.
  • 24

    Citations

    Citations of this article.

Abstract

An anomalous energy pathway with energetically equivalent double saddle points for vacancy mediated self-diffusion within an hcp-Ti basal plane is unveiled by density functional theory. Examination of migration pathway and phonon force constants suggests that the migrating atom tries to follow the bcc-hcp phase transition via the Burgers shear deformation. We propose that the formed energy local minimum with a bcc-like atomic environment between the two saddle points originates from the existence of high-temperature bcc phase and is a feature of Group IV hcp metals with bcc-hcp phase transition. Computed diffusion coefficients are in favorable accord with experiments for hcp Ti.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free