The Application of CFD to Model Windage Power Loss From a Spiral Bevel Gear

  • Rapley S
  • Eastwick C
  • Simmons K
  • 2


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


In some aero-engine applications a spiral bevel gear is mounted in a bearing chamber. The bearings and gears create a highly rotating, turbulent and chaotic flow field within the chamber. In this paper a single-phase computational study of the flow around a spiral bevel gear is presented and the data is compared to available experimental data. Results are presented for clockwise and anticlockwise rotation for both unshrouded and shrouded configurations. Reasonable agreement of the computational data with the experimental data is obtained. Moment coefficients show the same trends in behaviour for clockwise and anticlockwise rotation although numerical agreement is not ideal with a difference of up to 27%, in the unshrouded case. For the shrouded configuration, static pressure profiles along the shroud are compared to experimental data, and these show good agreement although in the worst case there is 23% difference between computational and experimental values. The effect of different computational wall treatments is presented.

Author-supplied keywords

  • CFD
  • Spiral Bevel Gear
  • Windage Power Loss

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Steve Rapley

  • Carol Eastwick

  • Kathy Simmons

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free