Application of quartz crystal nanobalance and principal component analysis for detection and determination of nickel in solution.

  • Mirmohseni A
  • Shojaei M
  • Feizi M
 et al. 
  • 3


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Quartz crystal nanobalance (QCN) sensors are considered as powerful mass sensitive sensors to determine materials in the sub-nanogram level. In the first part of this study, a single piezoelectric QCN modified with polypyrrole (PPy) has been tested for detection and determination of nickel ions in the solution at room temperature. The developed method was successfully applied for detection of total nickel in samples taken from several hot springs located at the Northwest of Iran. The frequency shifts were linear with respect to the concentration of nickel in solution. Using this method, nickel can be measured in the range of 3-20 mg L(-1). A lower limit of detection of 0.79 mg L(-1) and a sensitivity factor of 4.429 Hz/mg L(-1) were obtained. Some possible interference such as heavy metal ions (lead, mercury, and cadmium) was checked. No major interference was observed with the performance of the sensor except for mercury. To evaluate the ability of the PPy-modified QCN in discriminating between nickel ions and interfering mercury ions, a principal component analysis (PCA) was carried out. PCA was utilized to process the frequency response data of the single piezoelectric crystal at different times, considering different adsorption-desorption dynamics of nickel and interfering mercury ions on electrode. Using PCA, it was found that about 97.90% of the data variance could still be explained by two principal components (PC1 and PC2). The score plot of the data for the first two PCs showed that the PPy-modified QCN yields favorable identification and quantification performances for nickel ions. The accuracy of method for hot spring samples was evaluated and RSD of 4.10% was obtained.

Author-supplied keywords

  • Nickel
  • Principal Component Analysis
  • Quartz
  • Solutions
  • chemistry

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Abdolreza Mirmohseni

  • Maryam Shojaei

  • Mohammad Ali Hosseinpour Feizi

  • Fahimeh Farshi Azhar

  • Mehrdad Rastgouye-Houjaghan

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free