Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development

55Citations
Citations of this article
145Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box-specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)-, and abscisic acid (ABA)-responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-LIKE2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of PHYTOCHROME INTERACTING FACTOR3-LIKE5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development. © 2012 American Society of Plant Biologists. All rights reserved.

Cite

CITATION STYLE

APA

Hsieh, W. P., Hsieh, H. L., & Wu, S. H. (2012). Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. Plant Cell, 24(10), 3997–4011. https://doi.org/10.1105/tpc.112.105478

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free