The use of artificial neural networks in the analysis and prediction of stock prices

  • Andrade De Oliveira F
  • Enrique Zárate L
  • De Azevedo Reis M
 et al. 
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


In recent years there has been a significant growth of interest in the incorporation of historical series of variables related to stock prediction into mathematical models or computational algorithms in order to generate predictions or indications about expected price movements. The objective of this study was to utilize artificial neural networks to predict the closing price of the stock PETR4 which is traded on BM & FBOVESPA. Three stages were used to generate the prediction: obtainment of the samples, pre-processing, and prediction. 32 different configurations were created by varying the window size and prediction horizon. The best performance was obtained with 5 days of quotes and a prediction horizon of 1 day where the mean squared error was 0.0129. © 2011 IEEE.

Author-supplied keywords

  • Artificial Neural Network
  • Financial Time Series
  • Forecasting
  • PETR4
  • Stock

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in


  • F. Andrade De Oliveira

  • L. Enrique Zárate

  • M. De Azevedo Reis

  • C. Neri Nobre

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free