• Ferrari S
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


This paper proposes a regression model where the response is beta distributed using a parameterization of the beta law that is indexed by mean and dispersion pa-rameters. The proposed model is useful for situations where the variable of interest is continuous and restricted to the interval (0, 1) and is related to other variables through a regression structure. The regression parameters of the beta regression model are inter-pretable in terms of the mean of the response and, when the logit link is used, of an odds ratio, unlike the parameters of a linear regression that employs a transformed response. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, for Fisher's information matrix and its inverse. Hypothesis testing is performed using approximations obtained from the asymptotic normality of the max-imum likelihood estimator. Some diagnostic measures are introduced. Finally, practical applications that employ real data are presented and discussed.

Author-supplied keywords

  • Beta distribution
  • and phrases
  • leverage
  • maximum likelihood estimation
  • pro-portions
  • residuals

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • Silvia L P Ferrari

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free