Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake

  • Puig S
  • Lee J
  • Lau M
 et al. 
  • 32


    Mendeley users who have this article in their library.
  • 245


    Citations of this article.


The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. However, little is known about Ctr protein topology, structure, and the mechanisms by which this class of transporters mediates high affinity copper uptake. In this report, we elucidate the topological orientation of the yeast Ctr1 copper transport protein. We show that a series of clustered methionine residues in the hydrophilic extracellular domain and an MXXXM motif in the second transmembrane domain are important for copper uptake but not for protein sorting and delivery to the cell surface. The conversion of these methionine residues to cysteine, by site-directed mutagenesis, strongly suggests that they coordinate to copper during the process of metal transport. Genetic evidence supports an essential role for cooperativity between monomers for the formation of an active Ctr transport complex. Together, these results support a fundamentally conserved mechanism for high affinity copper uptake through the Ctr proteins in yeast and humans.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Sergi Puig

  • Jaekwon Lee

  • Miranda Lau

  • Dennis J. Thiele

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free