Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus

  • Shimizu H
  • Ohashi K
  • Utoh R
 et al. 
  • 53

    Readers

    Mendeley users who have this article in their library.
  • 71

    Citations

    Citations of this article.

Abstract

The present study was designed to establish a novel tissue engineering approach for diabetes mellitus (DM) by fabricating a tissue sheet composed of pancreatic islet cells for in vivo transplantation. Pancreatic islet cell suspensions were obtained from Lewis rats, and plated onto temperature-responsive culture dishes coated with extracellular matrix (ECM) proteins. After the cells reached confluency, islet cells cultured on laminin-5 coated dishes were successfully harvested as a uniformly spread tissue sheet by lowering the culture temperature to 20 °C for 20 min. The functional activity of the islet cell sheets was confirmed by histological examination and Insulin secretion assay prior to in vivo transplantation. Histological examination revealed that the harvested islet cell sheet was comprised of insulin- (76%) and glucagon- (19%) positive cells, respectively. In vivo functionality of the islet cell sheet was maintained even 7 days after transplantation into the subcutaneous space of Lewis rats. The present study describes an approach to generate a functional sheet of pancreatic islet cells on laminin-5 coated temperature-responsive dishes, which can be subsequently transplanted in vivo. This study serves as the foundation for the creation of a novel cell-based therapy for DM to provide patients an alternative method. © 2009 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • Cell sheet
  • Islet transplantation
  • Laminin-5
  • Monolayer culture

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free