Biofiltration for removal of BOM and residual ammonia following control of bromate formation

  • Wert E
  • Neemann J
  • Rexing D
 et al. 
  • 30


    Mendeley users who have this article in their library.
  • 30


    Citations of this article.


Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 μg/L), formaldehyde (11-20 μg/L), and oxalate (83-145 μg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH3-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT)=8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT=3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control. © 2007 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • Ammonia
  • Assimilable organic carbon (AOC)
  • Backwashing
  • Biological filtration
  • Bromate
  • Nitrification
  • Ozone

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free