A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland

  • Bechtel A
  • Schubert C
  • 65


    Mendeley users who have this article in their library.
  • 33


    Citations of this article.


The biomarker composition and stable isotope (C, O) ratio values of organic matter (OM) and carbonate from sediment cores from the oligotrophic Lake Brienz and the eutrophic Lake Lugano (both in Switzerland) are compared, in order to obtain information about OM sources and transformation processes. Eutrophic conditions at Lake Lugano are reflected in elevated total organic carbon (TOC) content and hydrogen index (HI) values, as well as higher lipid concentrations. Parallel down core trends in δ13C values of TOC and calcite in the Lake Lugano sediments reflect bioproductivity cycles. Variations in δ18O values of calcite are consistent with changes in mean summer temperature over the time interval covered by the core. In contrast, such a correlation does not exist for Lake Brienz and there the stable isotope composition of calcite reflects its allochthonous origin. In the sediments of both lakes, fatty acid (FA) distributions and the composition of n-alkanols and n-alkanes indicate highly variable proportions of autochthonous OM sources (algae, zooplankton, bacteria) and OM from land plants. Enhanced in situ microbial synthesis during sediment deposition in Lake Lugano is suggested by the higher TOC-normalised concentrations of branched chain FAs (C15-C17), hopanoic acids and triterpenoid alcohols (i.e. tetrahymanol, diplopterol). Variations in the concentrations of cholesterol are related to contributions from zooplankton and/or green algae, while sitosterol concentrations reflect the input of vascular plants. Periods of increased input of OM from diatoms are evidenced by high 24-methylcholesta-5,22-dien-3β-ol (either epibrassicasterol or brassicasterol) and/or highly branched isoprenoid (HBI) alkenes concentrations. High relative concentrations of diplopterol in Lake Lugano sediments are consistent with the predominance of cyanobacteria commonly observed in eutrophic lakes. The presence of archeol and hydroxyarcheol in very low concentrations in the Lugano sediments argues for the activity of methanogens and/or anaerobic methanotrophs. Differences in OM degradation processes are reflected in higher chlorin index values in the Brienz sediments but higher saturated vs. unsaturated n-FAs in the core from Lugano. Higher concentrations of branched chain FAs and 16:1ω7 n-FA, as well as enhanced 18:1ω7/18:1ω9 n-FA, are consistent with enhanced bacterial biomass in the Lugano water column or sediments. The preservation of phytol seems to be enhanced in sediments with a high relative contribution of land plant OM. Major factors affecting OM accumulation in the lakes are differences in OM sources (i.e. terrestrial OM vs. autochthonous production), extent of bacterial activity and most likely oxygen availability in the water column. © 2009 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free