Biologically Variable Bypass Reduces Enzymuria After Deep Hypothermic Circulatory Arrest

  • Singal R
  • Docking L
  • Girling L
 et al. 
  • 10


    Mendeley users who have this article in their library.
  • 6


    Citations of this article.


Background: Renal injury is common after open-heart surgery. Cardiopulmonary bypass contributes to the problem. We compared conventional nonpulsatile perfusion (NP) to biologically variable perfusion (BVP), which uses a computer controller to restore physiological beat-to-beat variability to roller pump flow. We hypothesized BVP would decrease renal injury after deep hypothermic circulatory arrest. Methods: Pigs were randomly assigned to either BVP (n = 9) or NP (n = 9), cooled, arrested at 18°C (1 hour), reperfused, and rewarmed and maintained normothermic (3 hours). Additional pigs had NP for a similar time as above, but without circulatory arrest (n = 3), or were sham-treated without bypass (n = 3). Hemodynamics, acid-base status, temperature, and urine volumes were measured. Urinary enzyme markers of tubular injury were compared post-hoc for gamma glutamyl transpeptidase, alkaline phosphatase, and glutathione S-transferase and by urine proteomics using mass spectrometry. Results: Urine output at 1 hour after arrest was 250 ± 129 mL with BVP versus 114 ± 66 mL with NP (p < 0.02). All three renal enzyme markers were higher with NP after arrest compared with BVP. In animals on bypass without arrest or those sham-treated, no elevations were seen in renal enzymes. Urine proteomics revealed abnormal proteins, persisting longer with NP. Biologically variable perfusion decreased cooling to 21.0 ± 9.0 minutes versus 31.7 ± 7.5 minutes (p < 0.002), and decreased rewarming to 22.1 ± 3.9 minutes versus 31.2 ± 5.1 minutes (p < 0.002). Conclusions: Biologically variable perfusion improved urine output, decreased enzymuria, and attenuated mass spectrometry urine protein signal with more rapid temperature changes. This strategy could potentially shorten bypass duration and may decrease renal tubular injury with deep hypothermic circulatory arrest. © 2006 The Society of Thoracic Surgeons.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Rohit K. Singal

  • Leanne M. Docking

  • Linda G. Girling

  • M. Ruth Graham

  • Peter W. Nickerson

  • Bruce M. McManus

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free