The biology of peroxisome proliferator - Activated receptors - Relationship with lipid metabolism and insulin sensitivity.

  • Ferré P
  • 2


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the superfamily of nuclear receptors. Three isoforms (alpha, delta, and gamma) have been described. They act on DNA response elements as heterodimers with the nuclear retinoic acid receptor. Their natural activating ligands are fatty acids and lipid-derived substrates. PPAR-alpha is present in liver, heart, and, to a lesser extent, skeletal muscle. When activated, it promotes fatty acid oxidation, ketone body synthesis, and glucose sparing. Fibrates, which are used as hypolipidemic drugs, are ligands of PPAR-alpha. PPAR-delta is ubiquitous and could also favor fatty acid oxidation in tissues in which PPAR-alpha is absent or less expressed. PPAR-gamma is expressed in adipose tissue, lower intestine, and cells involved in immunity. Activation of PPAR-gamma induces the differentiation of preadipocytes into adipocytes and stimulates triglyceride storage. Thiazolidinediones are compounds used as hypoglycemic, muscle insulin-sensitizing agents in type 2 diabetes. Unexpectedly, they are activators of PPAR-gamma. Their action on muscle insulin sensitivity may be secondary to the lowering of circulating lipids on PPAR-gamma activation and to the secretion by adipocytes of insulin-sensitizing hormones such as adiponectin, all promoting glucose utilization. The PPARs are thus major regulators of lipid and glucose metabolism, allowing adaptation to the prevailing nutritional environment.

Author-supplied keywords

  • Adaptation
  • Adipocyte
  • Adipocytes
  • Adiponectin
  • Adipose
  • Adipose tissue
  • Biology
  • Body
  • Cell
  • DNA
  • Delta
  • Differentiation
  • Element
  • Environment
  • Factor
  • Fatty acid
  • Fatty acids
  • Fibrate
  • Glucose
  • Heart
  • Hormones
  • Insulin
  • Intestine
  • Isoform
  • Ligands
  • Lipid
  • Lipid metabolism
  • Lipids
  • Liver
  • Metabolism
  • Muscle
  • Nuclear
  • Nuclear receptor
  • Nuclear receptors
  • Oxidation
  • PPAR
  • PPAR alpha
  • PPAR delta
  • PPAR gamma
  • PPAR-alpha
  • PPAR-gamma
  • PPARs
  • Peroxisome proliferator
  • Peroxisome proliferator activated receptor
  • Peroxisome proliferator-activated receptor
  • Preadipocyte
  • Receptor
  • Retinoic acid
  • Retinoic acid receptor
  • Sensitivity
  • Synthesis
  • Thiazolidinedione
  • Thiazolidinediones
  • Tissue
  • Transcription
  • Transcription factor
  • Triglyceride
  • Type

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • P Ferré

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free