Biopores and root features as new tools for improving paleoecological understanding of terrestrial sediment-paleosol sequences

  • Gocke M
  • Gulyás S
  • Hambach U
 et al. 
  • 25


    Mendeley users who have this article in their library.
  • 13


    Citations of this article.


The important role of roots and rhizosphere processes is accepted for the top soil, but still under debate for the deep subsoil including soil parent material. Especially for terrestrial sediments like loess and dune sands, roots and root traces are mostly recognized in profile descriptions, but not interpreted in the paleoenvironmental context. Further, synchrony of sediment deposition and root trace formation is commonly assumed. This is challenged by partially large maximum rooting depths of plants, exceeding the soil depth, and by frequent occurrence of secondary carbonates and biopores of potential root origin below recent soil and paleosols. To improve understanding of paleoenvironmental records in terrestrial sediment-paleosol sequences, recent roots and root traces, including calcified roots and root-derived biopores, were investigated in six soil, loess and dune sand profiles across Central and SE Europe. Visualization of small carbonate accumulations (diameter≤1mm), frequently called 'pseudomycelia', by X-ray microtomographic scanning, and morphologic comparison with rhizoliths (calcified roots; diameter mostly 3-20mm, up to 100mm possible) indicate root origin of the former, therefore requiring renaming to microrhizoliths. Quantification of roots, biopores, rhizoliths and microrhizoliths on horizontal levels yielded maximum frequencies of 2100m-2, 4100m-2, 196m-2and 12,800m-2, respectively. Considering the pore volume remaining from former root growth this indicates their significant contribution to structural properties of the sediments and paleosols. Depth distribution of roots and root traces was frequently related to soil and paleosols, respectively, and mostly showed maximum frequencies within or immediately below these units. Root traces are therefore not necessarily of similar age like the surrounding sediment, but are typically of younger age. The time lag between root traces and the surrounding stratigraphic unit can vary between small time periods (likely decades to centuries) in case of microrhizoliths and several millenia in case of larger rhizoliths penetrating several stratigraphic units. With assumed radii of former rhizosphere extension of 5mm for microrhizoliths, a frequency of 12,500m-2corresponded to 100% rhizosphere area in the respective depth interval. These findings emphasize the meaning of root traces in sediment-paleosol sequences. Potential temporal and spatial inhomogeneity of root growth on the one hand, especially for shrub and tree vegetation, and occurrence of root remains of different age and origin in identical depth intervals on the other hand, hamper the assessment of the chronologic context of these with the surrounding sediment or paleosol. Nevertheless, root traces in terrestrial archives provide valuable information with respect to paleovegetation and paleoenvironmental conditions, if their chronological context is known. © 2013 Elsevier B.V.

Author-supplied keywords

  • Calcified roots
  • Dune sands
  • Loess
  • Pseudomycelia
  • Root frequency
  • Rooting depth

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free