BMP, wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border

77Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

Abstract

Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB. © 2012. Published by The Company of Biologists Ltd.

Author supplied keywords

Cite

CITATION STYLE

APA

Garnett, A. T., Square, T. A., & Medeiros, D. M. (2012). BMP, wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development (Cambridge), 139(22), 4220–4231. https://doi.org/10.1242/dev.081497

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free