A brain-computer-interface for the detection and modulation of gamma band activity

7Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Gamma band oscillations in the human brain (around 40 Hz) play a functional role in information processing, and a real-time assessment of gamma band activity could be used to evaluate the functional relevance more directly. Therefore, we developed a source based Brain-Computer-Interface (BCI) with an online detection of gamma band activity in a selective brain region in the visual cortex. The BCI incorporates modules for online detection of various artifacts (including microsaccades) and the artifacts were continuously fed back to the volunteer. We examined the efficiency of the source-based BCI for Neurofeedback training of gamma- and alpha-band (8-12 Hz) oscillations and compared the specificity for the spatial and frequency domain. Our results demonstrated that volunteers learned to selectively switch between modulating alpha- or gamma-band oscillations and benefited from online artifact information. The analyses revealed a high level of accuracy with respect to frequency and topography for the gamma-band modulations. Thus, the developed BCI can be used to manipulate the fast oscillatory activity with a high level of specificity. These selective modulations can be used to assess the relevance of fast neural oscillations for information processing in a more direct way, i.e., by the adaptive presentation of stimuli within well-described brain states. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Salari, N., & Rose, M. (2013). A brain-computer-interface for the detection and modulation of gamma band activity. Brain Sciences, 3(4), 1569–1587. https://doi.org/10.3390/brainsci3041569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free