Calibrating for viewing angle effect during heat transfer measurements on a curved surface

  • Chan T
  • Ashforth-Frost S
  • Jambunathan K
  • 2

    Readers

    Mendeley users who have this article in their library.
  • 68

    Citations

    Citations of this article.

Abstract

Liquid crystal thermography (LCT) has been widely used for the determination of surface heat transfer distribution. However, this technique is sensitive to illumination and viewing angle and therefore limited to surfaces with only slight curvature. A liquid crystal calibration technique using true-colour image processing system has now been developed to alleviate the effect of viewing angle on oblique/curved surfaces. Application of the calibration and transient liquid crystal thermographic techniques and uncertainty analysis to a heated air slot jet impinging on a semi-cylindrical convex surface has been demonstrated. It is shown that the local heat transfer coefficient may be overestimated by up to 39.1% at a viewing angle of 69° from the normal under test conditions. However, the overall uncertainty in heat transfer coefficient can be significantly reduced from the maximum value of 36.3% to within 11.1% by using the implemented viewing calibration technique. © 2001 Elsevier Science Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free