Carbon nanotube/carbon fiber hybrid multiscale composites

  • Thostenson E
  • Li W
  • Wang D
 et al. 
  • 229

    Readers

    Mendeley users who have this article in their library.
  • 541

    Citations

    Citations of this article.

Abstract

Carbon nanotubes were grown directly on carbon fibers using chemical vapor deposition. When embedded in a polymer matrix, the change in length scale of carbon nanotubes relative to carbon fibers results in a multiscale composite, where individual carbon fibers are surrounded by a sheath of nanocomposite reinforcement. Single-fiber composites were fabricated to examine the influence of local nanotube reinforcement on load transfer at the fiber/matrix interface. Results of the single-fiber composite tests indicate that the nanocomposite reinforcement improves interfacial load transfer. Selective reinforcement by nanotubes at the fiber/matrix interface likely results in local stiffening of the polymer matrix near the fiber/matrix interface, thus, improving load transfer.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free