Cationic distribution and spin canting in CoFe2O4 nanoparticles

157Citations
Citations of this article
163Readers
Mendeley users who have this article in their library.
Get full text

Abstract

CoFe2O4 nanoparticles (DNPD6nm), prepared by a thermal decomposition technique, have been investigated through the combined use of dc magnetization measurements, neutron diffraction, and 57Fe Mössbauer spectrometry under high applied magnetic field. Despite the small particle size, the value of saturation magnetization at 300K (Ms70Am2kg1) and at 5K (Ms100Am 2kg1) are rather close to the bulk values, making the samples prepared with this method attractive for biomedical applications. Neutron diffraction measurements indicate the typical ferrimagnetic structure of the ferrites, showing an inversion degree (NPD=0.74) that is in very good agreement with cationic distribution established from low temperature (10K) Mössbauer measurements in high magnetic field (moss=0.76). In addition, the in-field Mössbauer spectrum shows the presence of a non-collinear spin structure in both A and B sublattices. The results allow us to explain the high value of saturation magnetization and provide a better insight into the complex interplay between cationic distribution and magnetic disorder in ferrimagnetic nanoparticles. © 2011 IOP Publishing Ltd.

Cite

CITATION STYLE

APA

Peddis, D., Yaacoub, N., Ferretti, M., Martinelli, A., Piccaluga, G., Musinu, A., … Fiorani, D. (2011). Cationic distribution and spin canting in CoFe2O4 nanoparticles. Journal of Physics Condensed Matter, 23(42). https://doi.org/10.1088/0953-8984/23/42/426004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free