Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

  • Baker B
  • Trappmann B
  • Wang W
 et al. 
  • 361

    Readers

    Mendeley users who have this article in their library.
  • 105

    Citations

    Citations of this article.

Abstract

To investigate howcells sense stiffness in settings structurally similar to native extracellular matrices,we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell–matrix interactions observed with collagen matrices including stellate cell morphologies, cell- mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Brendon M. Baker

  • Britta Trappmann

  • William Y. Wang

  • Mahmut S. Sakar

  • Iris L. Kim

  • Vivek B. Shenoy

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free