Cerebellar processing of sensory inputs primes motor cortex plasticity

  • Popa T
  • Velayudhan B
  • Hubsch C
 et al. 
  • 110

    Readers

    Mendeley users who have this article in their library.
  • 57

    Citations

    Citations of this article.

Abstract

Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations.

Author-supplied keywords

  • cerebellum
  • human
  • modulation
  • motor cortex
  • plasticity
  • repetitive transcranial magnetic stimulation
  • thalamus

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Traian PopaNational Institute of Neurological Disorders and Stroke Intramural Research Program

    Follow
  • B. Velayudhan

  • C. Hubsch

  • S. Pradeep

  • E. Roze

  • M. Vidailhet

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free