Chain transfer to polymer in free-radical solution polymerization of 2-ethylhexyl acrylate studied by NMR spectroscopy

  • Heatley F
  • Lovell P
  • Yamashita T
  • 73

    Readers

    Mendeley users who have this article in their library.
  • 61

    Citations

    Citations of this article.

Abstract

The effects of the initial monomer concentration, [M]o, and percent conversion on the extent of chain transfer to polymer in free-radical solution polymerization of n-butyl acrylate has been studied. The polymerizations were carried out in cyclohexane at 70 °C using 0.1% (w/w) 2,2‘-azobis(2-cyanopropane) as initiator and the mole percent branched repeat units (mole percent branches) in the poly(n-butyl acrylate) was determined from unique resonances of branch-point carbons in the 13C NMR spectra. At [M]o > 10% (w/w) the mole percent branches is independent of [M]o and increases from 0.8 to 2.2% as conversion increases from 35 to 95%. However, for more dilute solutions, with [M]o ≤ 10% (w/w), the mole percent branches increases as [M]o decreases and is higher than at equivalent conversions for the more concentrated solution polymerizations; e.g., at 25% conversion the mole percent branches increases from 2.7% for [M]o = 10% (w/w) to 5.9% for [M]o = 3% (w/w). These observations are explained in terms of the ratio of the concentrations of polymer repeat units and monomer in the vicinity of the propagating chain end. In more concentrated solutions, intermolecular chain transfer to polymer dominates because, at all except the lowest percent conversions, the overall polymer repeat unit concentration is sufficient for overlap of individual polymer coils. However, in the dilute solutions the overall polymer repeat unit concentration is too low for overlap of individual polymer coils and intramolecular chain transfer to polymer dominates. Under these conditions, the local polymer repeat unit concentration within the isolated propagating chains is defined by the chain statistics and so is approximately constant, whereas the monomer is distributed uniformly throughout the solution. Thus, for dilute solutions, as [M]o decreases, the probability of chain transfer to polymer (and hence the mole percent branches) increases.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • F. Heatley

  • P. A. Lovell

  • T. Yamashita

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free