Channel Coding and Decoding in a Relay System Operated with Physical layer Network Coding

  • Zhang S
  • Liew S
  • 11


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Physical-layer Network Coding (PNC) can significantly improve the throughput of wireless two way relay channel (TWRC) by allowing the two end nodes to transmit messages to the relay simultaneously. To achieve reliable communication, channel coding could be applied on top of PNC. This paper investigates link-by-link channel-coded PNC, in which a critical process at the relay is to transform the superimposed channel-coded packets received from the two end nodes plus noise, Y3=X1+X2+W3, to the network-coded combination of the source packets, S1 XOR S2 . This is in distinct to the traditional multiple-access problem, in which the goal is to obtain S1 and S2 separately. The transformation from Y3 to (S1 XOR S2) is referred to as the Channel-decoding-Network-Coding process (CNC) in that it involves both channel decoding and network coding operations. A contribution of this paper is the insight that in designing CNC, we should first (i) channel-decode Y3 to the superimposed source symbols S1+S2 before (ii) transforming S1+S2 to the network-coded packets (S1 XOR S2) . Compared with previously proposed strategies for CNC, this strategy reduces the channel-coding network-coding mismatch. It is not obvious, however, that an efficient decoder for step (i) exists. A second contribution of this paper is to provide an explicit construction of such a decoder based on the use of the Repeat Accumulate (RA) code. Specifically, we redesign the belief propagation algorithm of the RA code for traditional point-to-point channel to suit the need of the PNC multiple-access channel. Simulation results show that our new scheme outperforms the previously proposed schemes significantly in terms of BER without added complexity.

Author-supplied keywords

  • cs.IT
  • cs.NI
  • math.IT

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Shengli Zhang

  • Soung Chang Liew

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free