Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses

  • Meng J
  • Zhang X
  • Wang X
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 18

    Citations

    Citations of this article.

Abstract

The output power and conversion efficiency of the thermoelectric generator (TEG) are closely related to not only the materials properties but also the geometric structure. This paper developed a multi-physics, steady-state, and three-dimensional numerical TEG model to investigate the TEG performance, and then the model is compared with the classical thermal resistance model. Bismuth-telluride are used as p- and n-type materials. The comparison reveals that the assumption of constant material properties leads to underestimated inner electrical resistance, and overestimated thermal conductance and Seebeck coefficient, so that the thermal resistance model predicts unrealistically high performance than the present model. The results also indicate that when heat losses exist between the TEG and the ambient, although the output power is slightly elevated, the conversion efficiency is significantly reduced, hence, improvement of the heat insulation effect is critically important for high-temperature TEGs. Furthermore, the TEG geometry also affects its performance significantly: usage of thin ceramic plates increases the junction temperature difference, and hence enhances the TEG performance; there are two optimal leg lengths which correspond to the maximum output power and the maximum conversion efficiency, respectively; when heat losses are not ignorable, a large semiconductor cross-sectional area remarkably reduces the ratio of the heat liberated to the ambient to the heat absorbed from the high-temperature heat source, and hence improves the conversion efficiency.

Author-supplied keywords

  • Conversion efficiency
  • Heat losses
  • Optimization
  • Output power
  • Thermoelectric generator
  • Variable properties

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free