Characterization of Anti-CCR5 Ribozyme-Transduced CD34+ Hematopoietic Progenitor Cells in Vitro and in a SCID-hu Mouse Model in Vivo

  • Bai J
  • Gorantla S
  • Banda N
 et al. 
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Abstract

The cellular entry of HIV is mediated by the specific interaction of viral envelope glycoproteins with the cell-surface marker CD4 and a chemokine receptor (CCR5 or CXCR4). Individuals with a 32-base-pair (bp) deletion in the CCR5 coding region, which results in a truncated peptide, show resistance to HIV-1 infection. This suggests that the downregulation of CCR5 expression on target cells may prevent HIV infection. Therefore, ribozymes that inhibit the CCR5 expression offer a novel approach for anti-HIV gene therapy. To assess the effect of an anti-CCR5 ribozyme (R5Rbz) on macrophage differentiation, CD34+ hematopoietic progenitor cells were transduced with a retroviral vector carrying R5Rbz and allowed to differentiate in the presence of appropriate cytokines. R5Rbz-transduced CD34+ cells differentiated normally into mature macrophages that carried CD14 and CD4 surface markers, expressed the anti-CCR5 ribozyme, and showed significant resistance to viral infection upon challenge with the HIV-1 BaL strain. Using an in vivo thymopoiesis model, the effect of R5Rbz on stem cell differentiation into thymocytes was evaluated by reconstituting SCID-hu mice thymic grafts with ribozyme-transduced CD34+ cells. FACS analysis of cell biopsies at 4 and 6 weeks postengraftment for HLA, CD4, and CD8 markers showed comparable levels of reconstitution and similar percentages of subpopulations of thymocytes between grafts receiving R5Rbz-transduced and control CD34+ cells. RT-PCR assays demonstrated the expression of the anti-CCR5 ribozyme in CD4+, CD8+, and CD4+/CD8+ thymocyte subsets derived from R5Rbz-transduced CD34+ cells. These results indicate that anti-CCR5 ribozyme can be introduced into hematopoietic stem cells without adverse effects on their subsequent lineage-specific differentiation and maturation. The expression of anti-CCR5 ribozymes in HIV-1 target cells offers a novel gene therapy strategy to control HIV infection.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Jirong Bai

  • Santhi Gorantla

  • Nirmal Banda

  • Laurence Cagnon

  • John Rossi

  • Ramesh Akkina

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free