Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus

  • Chen S
  • Halkier B
  • 17


    Mendeley users who have this article in their library.
  • 33


    Citations of this article.


The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Sixue Chen

  • Barbara Ann Halkier

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free