Characterizing the discoloration of methylene blue in Fe0/H2O systems

  • Noubactep C
  • 23

    Readers

    Mendeley users who have this article in their library.
  • 73

    Citations

    Citations of this article.

Abstract

Methylene blue (MB) was used as a model molecule to characterize the aqueous reactivity of metallic iron in Fe0/H2O systems. Likely discoloration mechanisms under used experimental conditions are: (i) adsorption onto Fe0and Fe0corrosion products (CP), (ii) co-precipitation with in situ generated iron CP, (iii) reduction to colorless leukomethylene blue (LMB). MB mineralization (oxidation to CO2) is not expected. The kinetics of MB discoloration by Fe0, Fe2O3, Fe3O4, MnO2, and granular activated carbon were investigated in assay tubes under mechanically non-disturbed conditions. The evolution of MB discoloration was monitored spectrophotometrically. The effect of availability of CP, Fe0source, shaking rate, initial pH value, and chemical properties of the solution were studied. The results present evidence supporting co-precipitation of MB with in situ generated iron CP as main discoloration mechanism. Under high shaking intensities (>150 min-1), increased CP generation yields a brownish solution which disturbed MB determination, showing that a too high shear stress induced the suspension of in situ generated corrosion products. The present study clearly demonstrates that comparing results from various sources is difficult even when the results are achieved under seemingly similar conditions. The appeal for an unified experimental procedure for the investigation of processes in Fe0/H2O systems is reiterated. © 2008 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Adsorption
  • Co-precipitation
  • Iron corrosion
  • Methylene blue
  • Zerovalent iron

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free