Classification analysis of P-glycoprotein substrate specificity

  • Didziapetris R
  • Japertas P
  • Avdeef A
 et al. 
  • 85

    Readers

    Mendeley users who have this article in their library.
  • 170

    Citations

    Citations of this article.

Abstract

Prediction of P-glycoprotein substrate specificity (S(PGP)) can be viewed as a constituent part of a compound's "pharmaceutical profiling" in drug design. This task is difficult to achieve due to several factors that raised many contradictory opinions: (i) the disparity between the S(PGP) values obtained in different assays, (ii) the confusion between Pgp substrates and inhibitors, (iii) the confusion between lipophilicity and amphiphilicity of Pgp substrates, and (iv) the dilemma of describing class-specific relationships when Pgp has no binding sites of high ligand specificity. In this work, we compiled S(PGP) data for 1000 compounds. All data were represented in a binary format, assigning S(PGP) = 1 for substrates and S(PGP) = 0 for non-substrates. Each value was ranked according to the reliability of experimental assay. Two data sets were considered. Set 1 included 220 compounds with S(PGP) from polarized transport across MDR1 transfected cell monolayers. Set 2 included the entire list of 1000 compounds, with S(PGP) values of generally lower reliability. Both sets were analysed using a stepwise classification structure-activity relationship (C-SAR) method, leading to derivation of simple rules for crude estimation of S(PGP) values. The obtained rules are based on the following factors: (i) compound's size expressed through molar weight or volume, (ii) H-accepting given by the Abraham's beta (that can be crudely approximated by the sum of O and N atoms), and (iii) ionization given by the acid and base pKa values. Very roughly, S(PGP) can be estimated by the "rule of fours". Compounds with (N + O) > or = 8, MW > 400 and acid pKa > 4 are likely to be Pgp substrates, whereas compounds with (N + O) < or = 4, MW < 400 and base pKa < 8 are likely to be non-substrates. The obtained results support the view that Pgp functioning can be compared to a complex "mini-pharmacokinetic" system with fuzzy specificity. This system can be described by a probabilistic version of Abraham's solvation equation, suggesting a certain similarity between Pgp transport and chromatographic retention. The chromatographic model does not work in the case of "marginal" compounds with properties close to the "global" physicochemical cut-offs. In the latter case various class-specific rules must be considered. These can be associated with the "amphiphilicity" and "biological similarity" of compounds. The definition of class-specific effects entails construction of the knowledge base that can be very useful in ADME profiling of new drugs.

Author-supplied keywords

  • ADME predictions
  • Blood-brain barrier
  • CNS
  • Fuzzy specificity
  • P-glycoprotein
  • Property-based design

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free