Classification of Potential Endocrine Disrupters on the Basis of Molecular Structure Using a Nonlinear Modeling Method

  • Roncaglioni A
  • Novic M
  • Vracko M
 et al. 
  • 3

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Abstract: A methodology for the classification of endocrine disruption chemicals is proposed. It is based on a data set of 106 substances extracted from the list of 553 chemicals that were inspected by the European Union Commission for the scientific evidence of their endocrine disruption activity. The substances belong to different categories defined in the EU Commission report: (i) literature evidence for certainly active as endocrine disrupters, (ii) for potentially active, (iii) for less probable active - lacking evidence, and (iv) for certainty nonactive. 3D molecular coordinates were calculated using the AM1or the PM3 optimization method. From 3D coordinates an extensive set of molecular descriptors was calculated. The classification model based on the counterpropagation neural network was constructed and evaluated. This is the first time that the counterpropagation neural network is applied for the classification of compounds regarding their literature evidence for the endocrine disruption activity. The developed classification model is proposed as a tool for a preliminary assessment of potential endocrine disrupters, which would help the assessors to make the priority list for a large amount of chemicals that have to be tested with more expensive in vitro and in vivo methods.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • A Roncaglioni

  • M Novic

  • M Vracko

  • E Benfenati

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free