Skip to content
Journal article

Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific

Hasebe F, Inai Y, Shiotani M, Fujiwara M, Vömel H, Nishi N, Ogino S, Shibata T, Iwasaki S, Komala N, Peter T, Oltmans S...(+12 more)

Atmospheric Chemistry and Physics, vol. 13, issue 8 (2013) pp. 4393-4411 Published by Copernicus GmbH

  • 8

    Readers

    Mendeley users who have this article in their library.
  • 8

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasihorizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6×SMR min) is frequently observed on the 360 and 365K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ∼ SMRmin) at 380K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400K where OMR is generally smaller than SMRmin. © Author(s).

Find this document

Get full text

Cite this document

Choose a citation style from the tabs below